
A Focus Control Method Based on City Blocks for the Focus+Glue+Context Map

Daisuke YAMAMOTO Kohei HUKUHARA Naohisa TAKAHASHI

Nagoya Institute of Technology
Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
E-mail: {daisuke,naohisa}@nitech.ac.jp

Abstract

In order to show both a detailed map (Focus) and a wide-
area map (Context) in one map, we have proposed the Fo-
cus+Glue+Context map, a type of fisheye view for mobile
maps. A problem in the Focus+Glue+Context map is that if
the radius of the Focus is large, the Context area is very nar-
row, and if the radius of the Focus is small, we cannot show
the entire target area. To solve this problem, we have to de-
termine the radius of the Focus according to the shape of
the target area. In this work, we have proposed the Expand
Loop Road algorithm to controls the radius and position of
the Focus by city block. Moreover, we applied this method
to a Focus+Glue+Context map service. Although the con-
ventional method, which controls the radius of the Focus by
a constant scale, has to operate 7.0 times to achieve 80%
accuracy, the proposed method operates only 1.07 times to
achieve 82.6% accuracy. In the future, the proposed method
will enable mobile maps with fisheye views to be controlled
easily based on road networks.

1 Introduction

In recent years, advanced Web Map Services (WMSs)
such as Google Maps and Yahoo! Maps have become
available online. These services can be accessed from not
only PCs but also mobile terminals such as cellular phones.
When users want to search multiple areas by using existing
WMSs, they have to switch between multiple maps with dif-
ferent scales and visualize geographical relations between
these maps. Such operations lead to a large cognitive cost
for users.

Previous studies [4][7][8][3][1] have proposed a
Focus+Context-type fisheye view map that shows both the
detailed map (Focus) and the wide-area map (Context) in
one map to solve the abovementioned problem. However,
since existing fisheye view methods generate the entire map
dynamically by using a displacement function, the calcula-
tion and communication costs are very high. Therefore, it
is difficult to apply these methods to mobile WMSs.

In this light, we have proposed a Focus+Glue+Context
map [10] (hereafter referred to as F+G+C map); this is the
world’s first fisheye view map for WMSs and mobile ter-
minals. This method is much faster because it limits the
area that needs to be calculated dynamically. In addition,
we proposed an interface based on a posture sensor for use
with mobile terminals [11].

Since the F+G+C map has six degrees of freedom, users
have to independently control the position (x- and y-axes),
size, and scale of the Focus; width of the Glue; and scale
of the Context. These operations are particularly diffi-
cult when using mobile terminals because these are not
equipped with a mouse. Moreover, the F+G+C map has
a problem in that if the radius of the Focus is large, the
Context area is too narrow, and if the radius of the Focus
is small, we cannot view the entire target area. Therefore,
a method that can control the radius and center position of
the Focus automatically in a manner similar to the autofo-
cus function of a still camera is required. We proposed the
Expand Loop Road algorithm to control the radius and cen-
ter position of the Focus automatically based on the roads
in the target area. This method enables users to control the
Focus with minimal operations and high accuracy.

This method is only the first step toward controlling
F+G+C maps based on road networks. In the future, we in-
tend to contribute toward the popularization of fisheye view
maps in mobile terminals by improving this method.

2 Focus+Glue+Context
2.1 Focus+Glue+Context maps

We proposed the Emma system [9] to enhance cognitive
maps by expressing the human’s geographical image as the
components of the city image [5], such as districts, land-
marks, and paths. Emma enables users to transform and
control a map based on cognitive maps. We proposed the
F+G+C map that has a Focus, a Glue, and a Context and
made it available publicly as a WMS1 [10]. As shown in

1http://joint.alpslab.jp/fisheye/



Figure 1. Focus+Glue+Context map.

Figure 1, the Focus is an area of a large-scale map that en-
ables users to understand details about the focused area; the
Context is an area of a small-scale map that enables users
to understand geographical relations; and the Glue shows
the routes that connect the Focus with the Context. Unlike
existing fisheye views, in the F+G+C map, the Focus and
Context have no distortion because the Glue contains all the
distortion. Then, the Glue is compressed considerably when
moving from the Focus to the Context. Major roads, rails,
and the roads that run from an area in the Focus into an area
in the Context are drawn selectively in order to reduce the
density of roads in the Glue. The F+G+C maps draw only
the Glue dynamically. Moreover, in the F+G+C map, the
calculation cost is lower than that in existing fisheye views
for maps, in which the entire region has to be transformed.
Although the Glue must be dynamically generated accord-
ing to its shape, the advantage of using the Focus and the
Context is that dynamic generation is not required. There-
fore, by generating the Focus and Context maps in advance,
we can generate the F+G+C map in real-time. In fact, the
F+G+C method is up to 12 times faster than conventional
methods [10].

In addition, we developed an interface based on a posture
sensor for use with mobile terminals by taking advantage
of these abovementioned characteristics [11], as shown in
Figure 2. This system enables users to control the F+G+C
maps easily by tilting and shaking the terminal with one
hand.

2.2 Problem of determining size of Focus

In the F+G+C map, if the radius of the Focus is smaller
than the target area (parks in this case), the entire target area
cannot be shown in the Focus, as shown in Figure 3-a. In
this case, users cannot view the entire target area, and some
roads connected from the Focus to the Context cannot be
drawn in the Glue. Conversely, if the radius of the Focus is
larger than the target area, as shown in Figure3-b, the Con-
text becomes narrow and the density of roads in the Glue
increases. Therefore, we have to adjust the radius of the Fo-

Figure 2. Focus+Glue+Context map system
for mobile terminals.

cus properly according to the outline of the target area, as
shown in Figure 3-c.

If the outline of the target area (for example, landmarks
and shopping area) can be acquired, in general, we can eas-
ily determine the radius and position of the circle-type Fo-
cus that touches this target. However, because many land-
marks are associated with a point on the map, we cannot
always acquire their outline and/or size. Moreover, some
landmarks such as a university and a shopping area consist
of some city blocks. Because we have to manually adjust
the size of the Focus according to the target, this is partic-
ularly difficult when using mobile terminals because these
are not equipped with a mouse.

Our previous study [11] adopted a simple method to
solve this problem. In this method, the radius of the Focus
is enlarged at a constant rate when users shake the termi-
nal. For example, when a user shakes the terminal to the
left once, the radius of the Focus increases by x%. When a
user shakes the terminal to the right once, the radius of the
Focus decreases by x%. Although we have to define x to
be as small as possible to enable the Focus to be adjusted
precisely, this requires the size to be controlled many times.

Therefore, we propose the Loop Road algorithm to ad-
just the size of the Focus based on city blocks by using road
networks. In general, target areas such as parks and shop-
ping areas are often delimited by streets. Therefore, if we
can extract a city block as a small area delimited by streets,
we can extract the outline of the target area. Moreover, we
propose the Expand Loop Road algorithm to expand city
blocks one-by-one in order to deal with targets that consist
of multiple contiguous city blocks.

3 Algorithm

In this section, we describe the Expand Loop Road algo-
rithm. First, we propose the Loop Road algorithm to extract
a loop road that surrounds the city block that contains the
target point. Next, we propose the Expand Loop Road algo-
rithm to extract the roads that surround multiple contiguous
city blocks by expanding city blocks one-by-one. By re-



(a (b (c

Figure 3. Problem of determining the size of the Focus. a) Because the Focus is very small, we
cannot understand the entire target area. b) Because the Focus is very large, the Context and the
Glue are very narrow. c) The Focus fits the target area properly.

peating the Expand Loop Road algorithm, we can extract
loop roads of any size.

Let us define some terms. A city block is the smallest
area that is surrounded by streets. A loop road is a series
of roads that surrounds a city block, as shown in Figure 4.
A node is an intersection. A link is a road that connects
two nodes without another intersection. A link may include
some curves and turning points.

3.1 Loop Road algorithm

We propose the Loop Road algorithm to extract a loop
road surrounding point C. Here, we remove orphan links
such as straight roads that do not form a loop road before-
hand.

First, we search the nearest link from point C. Then, we
follow the link in a counterclockwise direction. When the
link connects to the tail of the first link, the path consisting
of these links is a loop road. However, when the link comes
to a dead end, we follow the neighboring link by the depth-
first search algorithm, as shown in Figure 4.

Algorithm 1 shows the Loop Road algorithm in the
counterclockwise direction. Here, start and goal are the
front and tail nodes, respectively, of the nearest link from
point C. setVisitedLink(node1, node2) is a function that
sets a visited flag to the link that consists of node1 and
node2. node.UnvisitedLeftChild() is a function that returns
the unvisited and leftmost link that is connected from the
node. In the case of Figure 5, when node B is the cur-
rent node and all links (P1, P2, P3) are not set to visited
flags, this function returns node P3. In the same manner,
node.UnvisitedRightChild() is a function that returns the un-
visited and rightmost link that is connected from the current
node.

However, in the case of Figure 6, we cannot extract a
correct loop road by using this algorithm. Then, if the loop
road cannot surround point C, we delete the loop road, and
retry the Loop Road algorithm. After the execution of this
algorithm, the route that consists of the node stored in the
Stack is a loop road.

Nearest
LinkC

Block

round road

Figure 4. An exam-
ple of a loop road.

A

B
P3

P1

P2

Figure 5. Selection
of a loop road.

Figure 6. Sample of Loop Road algorithm that
cannot generate a loop road in one try.

3.2 Expand Loop Road algorithm

The Expand Loop Road algorithm expands city blocks
surrounded by a loop road along the radial direction block-
by-block. We define the smallest loop road that surrounds
point C as the level 1 loop road. We define the loop road
expanded n times by the Expand Loop Road algorithm as
the level n+1 loop road.

We describe the Expand Loop Road algorithm as fol-
lows. For each link in the level n loop road, apply the Loop
Road algorithm in the clockwise direction, as shown in Fig-
ure 7. This gives us the level n+1 loop road. This loop road
expands city blocks along the radial direction. However,
in the case of complex road networks, we have to apply
the Loop Road algorithm in the counterclockwise direction
for some links in order to expand city blocks. Therefore,
we have to apply the Loop Road algorithm in not only the



Algorithm 1 Loop Road algorithm (counterclockwise)
Require: start, goal

1: stack=new Stack()
2: setVisitedLink(goal,start)
3: stack.push(start)
4: while not stack.empty() do
5: node ⇐ stack.top()
6: if node ∈ stack without top then
7: return stack
8: else
9: child ⇐ node.UnvisitedLeftChild()

10: if child = none then
11: stack.pop()
12: else
13: setVisitedLink(node,child)
14: stack.push(child)
15: end if
16: end if
17: end while

clockwise but also the counterclockwise direction for each
link.

The algorithm is as given below.

STEP1 Initialize List A.

STEP2 Store links of an initial loop road (Figure 7-a ) in
List A.

STEP3 For each link stored in List A, apply the Loop Road
algorithm in the clockwise and counterclockwise di-
rections, as shown in Figure 7-b.

STEP4 Remove links stored in List A from links generated
in STEP3.

STEP5 Apply the Loop Road algorithm in the counter-
clockwise direction by using the links generated in
STEP4, as shown in Figure 7-c. Finally, we obtain an
expanded loop road.

STEP6 If the city blocks need to be further expanded, re-
peat from STEP2, as shown in Figure 7-d,e.

Here, List A is the list structure that stores the loop road.
Finally, we can obtain the radius and center point of the
Focus that contacts to the loop road for each level.

Figure 8 shows an example of the Expand Loop Road
algorithm for each level. In this case, it changes the size of
the Focus centered at the Nagoya Institute of Technology.
Figure 8-a shows a level 1 loop road; Figure 8-b, a level
2 loop road; and Figure 8-c, a level 3 loop road. Although
this campus consists of some city blocks, we can expand the
Focus properly by considering these city blocks. Moreover,
the loop roads including each level are stored in the database
by associating them with landmarks.

(a (b (c

(d (e

Figure 7. Procedure of Expand Loop Road
algorithm. Gray lines, black arrows, red ar-
rows, and the green circle indicate roads,
links, previous links, and the Focus area, re-
spectively.

(a (b (c

Figure 8. Example of loop road with the Fo-
cus. a) level 1 loop road, b) level 2 loop road,
and c) level 3 loop road.

4 Prototype System

The vector map data adopted by the prototype system
are Standard Road Map 2007 and Navigation Road Map
2007 obtained from Yahoo! Japan Corporation. In addi-
tion, we generate static raster maps by using ProAtlas Enter-
prise Server Development Kit obtained from Yahoo! Japan
Corporation. Because these maps are generated from the
same map data, there is no misalignment when they are
overlapped. The server system was developed using Java
Servlets and MySQL, and the client system, using Adobe
Flex3.

Figure 9 shows the result generated by using the proto-
type system without the Focus. Our system achieved not
only an area consisting of orderly city blocks but also the
downtown area consisting of an intricate system of roads,
as shown in Figure 9-a. Although the proposed algorithm
can achieve an area that consists of long and thin blocks
such as a river terrace, the result of the loop road is too long
and thin and the Focus becomes too large, as shown in Fig-
ure 9-c. Moreover, in an area that has only a few roads, such



(a (b (c

Figure 9. Example of Expand Loop Road al-
gorithm. A level 1, level 2, and level 3 loop
road are indicated in blue, red, and green, re-
spectively.

as a mountainous district, the proposed system generates a
loop road that is very large, as shown in Figure 9-c. In a
future work, we intend to improve the Expand Loop Road
algorithm in order to adapt to such areas by considering the
shape of blocks.

5 Experimental Results

In this section, we evaluate the Focus controlling method
based on the Expand Loop Road algorithm. The target land-
marks are universities and parks in Japan. Some of these
consist of some city blocks. We compare the proposed
method with the conventional method from the viewpoint
of the number of operations and fit ratios. The two methods
are described as follows.

Method 1 (proposed method) Enlarge and narrow the Fo-
cus based on city blocks by using the Expand Loop
Road algorithm.

Method 2 (conventional method) Enlarge and narrow the
Focus by constant scales (10%, 20%, 50%, 100%).

In each method, we enlarge the Focus from the initial size
until it covers the entire target area. Then, we measure the
number of operations and the fit ratio, defined as follows.

Number of operations Number of operations that enlarge
the Focus from the initial size.

Fit ratio The ratio of the dimension of the Focus to that of
the circle that contacts the outline of the target area.

In addition, the initial radius of the Focus is 80 pixels. This
size can cover most small parks in Nagoya city. Moreover,
the positions (latitude and longitude) of the targets are ac-
quired by Yahoo! Geocoder.

Figure 10 and Figure 11 show the results.
The conventional method has a disadvantage in that al-

though the fit ratio is high (76.5%) when the Focus expands
by 10%, the number of operations is also large (7.0 times).
Although the number of operations is small (1.33 times)
when the Focus expands by 100%, the fit ratio is not high
(50.5%). Therefore, we cannot simultaneously realize both

0

2

4

6

8

10% 20% 50% 100% Proposed methodN
um

be
r o

f o
pe

ra
�o

n

Figure 10. Comparison between number of
operations in conventional and proposed
method. 10%, 20%, 50%, and 100% scales for
the conventional method.

a high fit ratio and a small number of operations. On the
other hand, the proposed method can achieve a high fit ra-
tio (82.6%) with a small number operations (1.07 times);
in other words, it can simultaneously realize a high fit ra-
tio and a small number of operations. These results suggest
that the proposed method can generate a Focus with higher
accuracy and a lesser number of operations than the con-
ventional method.

The proposed method has the following two advantages.
First, it determines the radius of the Focus by considering
the outline of the target based on city blocks. In the conven-
tional method, since the radius is increased by a constant
value such as 10%, users cannot set the radius to an inter-
mediate value. In contrast, the proposed method can set the
radius of the Focus to an appropriate value according to the
outline of city blocks. Second, the proposed method can ad-
just the position of the Focus properly. In the conventional
method, since the center position of the Focus is the fixed
point acquired from the geocoder, the fit ratio is not high if
this point is out of alignment from the center of the target.
Since the proposed method can adjust the center position of
the Focus based on the outline of the target area, the Focus
can fit the target area properly.

Next, Figure 12 shows the relation between the number
of operations that shows the entire target area and the fit ra-
tio in this case. Although the fit ratio is 68% on average
in the conventional method when the number of operations
is 0, the fit ratio is 100% in the proposed method. This
is because the level 1 loop road always corresponds to the
outline of the target city blocks. This suggests that the pro-
posed method has a significant advantage when the target
consists of one city block. Moreover, this suggests that the
fit ratio of the proposed method is always better than that
of the conventional method irrespective of the number of
operations.

6 Related Work

In some studies, a map was controlled in mobile termi-
nals using posture sensors. Rekimoto [6] proposed a mech-



0%
20%
40%
60%
80%

100%

10% 20% 50% 100% Proposed method

Fi
t r

a�
o

Figure 11. Comparison between fit ratio of
conventional and proposed method. 10%,
20%, 50%, and 100% are scales for the con-
ventional method.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

Proposed 
method

Conven�onal 
mehod

Number of opera�on

Fi
t R

a�
o

Figure 12. Relation between number of oper-
ations and fit ratio.

anism that enables users to select and zoom a target area in a
bird’s-eye-view map by tilting a mobile terminal by pushing
a button. In contrast to the fisheye map or F+G+C map, in
this mechanism, a user has to search for a target area using
a wide-area map before he/she views a detailed map of the
target many times. Gutwin [2] proposed a method that en-
ables users to view Web pages by using the Focus+Context
method in a mobile terminal. Because ordinary Web pages
viewed on a PC are not optimized for small displays, in this
method, the zoom in the focus area increases and that in the
context area decreases. Although users can view Web maps
by using this mechanism, this interface does not consider
the characteristics of maps.

7 Conclusion

In this paper, we proposed an Expand Loop Road algo-
rithm in order to control the size and position of the Focus
in the Focus+Glue+Context map. In addition, we developed
a prototype system based on this algorithm. Moreover, we
evaluated the prototype system. The obtained results sug-
gest that the proposed method can determine the size of the
Focus more appropriately with fewer operations than the
conventional method. In fact, although the existing method
has to operate 7.0 times to achieve 80% accuracy, the pro-
posed method operates only 1.07 times to achieve 82.6%
accuracy. By developing a mobile map system with fisheye
views that employs the proposed method, we will be able to

control a map easily.
In future work, we intend to solve the following prob-

lems. When the target area includes long and thin city
blocks, the loop road generated by the proposed algorithm is
very long. Therefore, we have to improve the Expand Loop
Road algorithm in order to adapt to these areas by consid-
ering the shape of blocks. We will propose a new method
for scrolling or turning the map by considering the compo-
nents of a cognitive map, such as a district. By considering
city blocks, we will be able to control the maps using fish-
eye views. In addition, we will develop a system that can
operate on common cellular phones such as an iPhone, and
we will make this system available publicly. Our system
will serve as a novel mobile WMS with fisheye views for
mobile terminals.

Acknowledgment We would like to thank the Yahoo!
Japan Corporation for supporting us during the develop-
ment of the prototype system. This work was also supported
by JSPS KAKENHI 20509003.

References

[1] C. Gutwin and C. Fedak. A comparison of fisheye lenses for
interactive layout tasks. In Proc. Graphics Interface 2004,
pages 213–220, 2004.

[2] C. Gutwin and C. Fedak. Interacting with big interfaces on
small screens: a comparison of fisheye, zoom, and panning
techniques. In Proc. Graphics Interface 2004, pages 145–
152. ACM Press, 2004.

[3] C. Gutwin and A. Skopik. Fisheye views are good for large
steering tasks. In Proc. SIGCHI 2003, pages 5–10, 2003.

[4] L. Harrie, L. T. Sarjakoski, and L. Lehto. A variable-
scale map for small-display cartography. In Proc. Symp. on
GeoSpatial Theory, Processing, and Applications, pages 8–
12, 2002.

[5] K. Lynch. The image of the city. MIT Press, 1960.
[6] J. Rekimoto. Tilting operations for small screen interfaces.

In Proc. 9th ACM Symp. on User Interface Software and
Technology, pages 167–168, 1996.

[7] M. Sarkar and M. H. Brown. Graphical fisheye views of
graphs. In Proc. SIGCHI 1992, pages 83–91. 1992.

[8] M. Sarkar, S. S. Snibbe, O. J. Tversky, and S. P. Reiss.
Stretching the rubber sheet: a metaphor for viewing large
layouts on small screens. In Proc. 6th ACM Symp. on User
Interface Software and Technology, pages 81–91. 1993.

[9] N. Takahashi. An elastic map system with cognitive map-
based operations. Int’l Perspectives on Maps and the Inter-
net, Michel P. Peterson (Ed.), Lecture Notes in Geoinforma-
tion and Cartography, pages 73–87, 2008.

[10] D. Yamamoto, S. Ozeki, and N. Takahashi. Fo-
cus+glue+context: An improved fisheye approach for web
map services. In Proc. ACM GIS 2009, pages 101-110,
2009.

[11] D. Yamamoto, S. Ozeki, and N. Takahashi. Wired fisheye
lens: A motion-based improved fisheye interface for mobile
web map services. In Proc. W2GIS 2009), 2009. (to appear).


